Improving Decision Accuracy Through LOPCOW Weighting and AROMAN Methods in Retail Store Location Selection

  • Setiawansyah Setiawansyah Universitas Teknokrat Indonesia
  • Yusra Fernando Universitas Teknokrat Indonesia
  • Agung Deni Wahyudi Universitas Teknokrat Indonesia
  • Yohanes Eka Wibawa Universitas Tanri Abeng Jakarta
  • Nuzuliarini Nuris Universitas Bina Sarana Informatika
Keywords: AROMAN, Decision Accuracy, LOPCOW, Location Evaluation, MCDM

Abstract

Choosing a strategic store location is an important factor in retail business success, but this decision is often influenced by data uncertainty and scale differences among criteria that can lead to bias in the decision-making process. This study proposes the use of LOPCOW to objectively determine the criterion weights based on data variability among alternatives, and AROMAN to reduce the influence of scale differences among criteria through gradual normalization. With this approach, it is hoped to obtain a more accurate, fair, and consistent ranking of locations. The ranking results in the selection of retail store locations are based on the final value of each alternative location. The location with the code LKM ranks highest with a final value of 0.8212, indicating that this location has the most optimal characteristics compared to other locations. The results of the study show that the combination of these two methods can produce more optimal and reliable decisions in selecting retail store locations, which in turn can enhance competitiveness and operational success in the retail business. The contribution from the ranking results of this retail store location provides significant strategic insights in the decision-making process for business expansion. By leveraging a quantitative approach that generates a final value for each location alternative, this research is able to provide an objective foundation for managers or decision-makers in selecting the best location. The identification of LKM locations as the most superior alternative indicates that the evaluation method used is effective in revealing the competitive advantages of a location based on the established criteria.

Downloads

Download data is not yet available.

References

N. Nursobah and R. Andrea, “Sistem Pendukung Keputusan Penentuan Lokasi Strategis Dalam Membangun Bisnis Usaha Menggunakan Metode Promethee II,” J. MEDIA Inform. BUDIDARMA, vol. 6, no. 2, p. 1064, Apr. 2022, doi: 10.30865/mib.v6i2.3997.

Q. Ren and M. H. Dunham, “Using semantic caching to manage location dependent data in mobile computing,” in Proceedings of the 6th annual international conference on Mobile computing and networking, 2000, pp. 210–221.

M. Keshavarz-Ghorabaee, “Assessment of distribution center locations using a multi-expert subjective–objective decision-making approach,” Sci. Rep., vol. 11, no. 1, p. 19461, Sep. 2021, doi: 10.1038/s41598-021-98698-y.

J. Wang, D. Darwis, R. D. Gunawan, and F. Ariany, “Optimizing E-Commerce Platform Selection Using Root Assessment Method and MEREC Weighting,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1 SE-Articles, pp. 1–12, Mar. 2025, doi: 10.33365/jatika.v6i1.6.

J. Wang, D. Darwis, S. Setiawansyah, and Y. Rahmanto, “Implementation of MABAC Method and Entropy Weighting in Determining the Best E-Commerce Platform for Online Business,” JiTEKH, vol. 12, no. 2, pp. 58–68, 2024, doi: 10.35447/jitekh.v12i2.1000.

J. Wang, S. Setiawansyah, and Y. Rahmanto, “Decision Support System for Choosing the Best Shipping Service for E-Commerce Using the SAW and CRITIC Methods,” J. Ilm. Inform. dan Ilmu Komput., vol. 3, no. 2, pp. 101–109, 2024, doi: 10.58602/jima-ilkom.v3i2.32.

R. I. Putra, R. Aryanti, M. F. Prathama, A. Dahroni, and B. Prayitno, Optimalisasi Multi Attribute Decision Making Dengan Pendekatan CRITIC. Bandar Lampung: PT. SNN Media, 2025.

S. Biswas, D. Pamucar, S. Dawn, and V. Simic, “Evaluation based on Relative Utility and Nonlinear Standardization (ERUNS) Method for Comparing Firm Performance in Energy Sector,” Decis. Mak. Adv., vol. 2, no. 1 SE-Articles, pp. 1–21, Jan. 2024, doi: 10.31181/dma21202419.

Z. Guo et al., “An integrated MCDM model with enhanced decision support in transport safety using machine learning optimization,” Knowledge-Based Syst., vol. 301, p. 112286, 2024, doi: https://doi.org/10.1016/j.knosys.2024.112286.

D. T. Do, “Assessing the Impact of Criterion Weights on the Ranking of the Top Ten Universities in Vietnam,” Eng. Technol. Appl. Sci. Res., vol. 14, no. 4 SE-, pp. 14899–14903, Aug. 2024, doi: 10.48084/etasr.7607.

S. Korucuk, A. Aytekin, Ö. Görçün, V. Simic, and Ö. Faruk Görçün, “Warehouse site selection for humanitarian relief organizations using an interval-valued fermatean fuzzy LOPCOW-RAFSI model,” Comput. Ind. Eng., vol. 192, p. 110160, Jun. 2024, doi: 10.1016/j.cie.2024.110160.

A. Ulutaş, F. Balo, and A. Topal, “Identifying the Most Efficient Natural Fibre for Common Commercial Building Insulation Materials with an Integrated PSI, MEREC, LOPCOW and MCRAT Model,” Polymers (Basel)., vol. 15, no. 6, p. 1500, Mar. 2023, doi: 10.3390/polym15061500.

F. Ecer, H. Küçükönder, S. Kayapınar Kaya, and Ö. Faruk Görçün, “Sustainability performance analysis of micro-mobility solutions in urban transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo framework,” Transp. Res. Part A Policy Pract., vol. 172, p. 103667, Jun. 2023, doi: 10.1016/j.tra.2023.103667.

S. Setiawansyah, Y. Rahmanto, A. Yudistira, A. D. Putra, and N. Hendrastuty, Metode Pembobotan Objektif Dalam Multi-Criteria Decision Making. PT. SNN Media Tech Press, 2025.

K. Kara, G. C. Yalçın, A. Z. Acar, V. Simic, S. Konya, and D. Pamucar, “The MEREC-AROMAN method for determining sustainable competitiveness levels: A case study for Turkey,” Socioecon. Plann. Sci., vol. 91, p. 101762, 2024.

S. Bošković, L. Švadlenka, M. Dobrodolac, S. Jovčić, and M. Zanne, “An Extended AROMAN Method for Cargo Bike Delivery Concept Selection,” Decis. Mak. Adv., vol. 1, no. 1, pp. 1–9, Jun. 2023, doi: 10.31181/v120231.

S. Bošković, L. Švadlenka, S. Jovčić, M. Dobrodolac, V. Simić, and N. Bacanin, “An Alternative Ranking Order Method Accounting for Two-Step Normalization (AROMAN)—A Case Study of the Electric Vehicle Selection Problem,” IEEE Access, vol. 11, pp. 39496–39507, 2023, doi: 10.1109/ACCESS.2023.3265818.

I. Nikolić, J. Milutinović, D. Božanić, and M. Dobrodolac, “Using an Interval Type-2 Fuzzy AROMAN Decision-Making Method to Improve the Sustainability of the Postal Network in Rural Areas,” Mathematics, vol. 11, no. 14. 2023. doi: 10.3390/math11143105.

K. Kara, G. Cihan Yalçın, V. Simic, A. Tuğrul Yıldırım, D. Pamucar, and P. Siarry, “A spherical fuzzy-based DIBR II-AROMAN model for sustainability performance benchmarking of wind energy power plants,” Expert Syst. Appl., vol. 253, p. 124300, 2024, doi: https://doi.org/10.1016/j.eswa.2024.124300.

M. B. Bouraima, S. Jovčić, M. Dobrodolac, D. Pamucar, I. Badi, and N. D. Maraka, “Sustainable Healthcare System Devolution Strategy Selection Using the AROMAN MCDM Approach,” Spectr. Decis. Mak. Appl., vol. 1, no. 1 SE-Articles, pp. 46–63, Jul. 2024, doi: 10.31181/sdmap1120243.

Y. Rahmanto, J. Wang, S. Setiawansyah, A. Yudhistira, D. Darwis, and R. R. Suryono, “Optimizing Employee Admission Selection Using G2M Weighting and MOORA Method,” Paradig. - J. Komput. dan Inform., vol. 27, no. 1 SE-, pp. 1–10, Mar. 2025, doi: 10.31294/p.v27i1.8224.

A. Yudhistira, J. Wang, Y. Rahmanto, and S. Setiawansyah, “Decision Support System for Optimizing Supplier Selection Using TOPSIS and Entropy Weighting Methods,” J. Pendidik. dan Teknol. Indones., vol. 4, no. 5 SE-, pp. 175–185, Nov. 2024, doi: 10.52436/1.jpti.456.

S. H. Hadad, I. Chandra, J. Wang, D. A. Megawaty, S. Setiawansyah, and A. Yudhistira, “DYNAMIC WEIGHT ALLOCATION IN MODIFIED MULTI-ATRIBUTIVE IDEAL-REAL COMPARATIVE ANALYSIS WITH SYMMETRY POINT FOR REAL-TIME DECISION SUPPORT ,” J. Tek. Inform., vol. 6, no. 1 SE-Articles, pp. 63–74, Feb. 2025, doi: 10.52436/1.jutif.2025.6.1.4170.

Published
2025-03-20
How to Cite
Setiawansyah, S., Fernando, Y., Wahyudi, A. D., Wibawa, Y. E., & Nuris, N. (2025). Improving Decision Accuracy Through LOPCOW Weighting and AROMAN Methods in Retail Store Location Selection. Jurnal Ilmiah Informatika Dan Ilmu Komputer (JIMA-ILKOM), 4(1), 77-88. https://doi.org/10.58602/jima-ilkom.v4i1.57