Kombinasi Metode Pembobotan Entropy dan Grey Relational Analysis dalam Pemilihan Pelanggan Terbaik
Abstract
The best customers are individuals or groups who not only consistently make purchases, but also show high loyalty to a company's products or services. The purpose of the research of the combination of Entropy and GRA weighting methods in selecting the best customers is to use a more objective and accurate approach in evaluating customers based on various relevant criteria. By utilizing the Entropy method, this study aims to objectively determine the weight of the criteria, based on the variation of customer assessment data. Once the criteria weights are determined, the GRA is used to analyze the relationship between the customer and the ideal solution, so that it can identify the customer closest to the best customer profile. The results of the best customer ranking show that Customer 2 occupies the top position with a value of 0.17819, indicating that this customer has the best performance in meeting the specified criteria. Followed by Customer 6 who obtained a value of 0.17794, which also showed excellent performance. The results of this ranking provide clear insights into customer profiles and can be the basis for formulating better strategies in customer relationship management.
Downloads
References
A. F. O. Pasaribu and N. Nuroji, “Sistem Pendukung Keputusan Penentuan Pelanggan Terbaik Menggunakan Profile Matching,” J. Data Sci. Inf. Syst., vol. 1, no. 1, pp. 24–31, 2023.
P. Hasan and Heru Sutejo, “SISTEM PENDUKUNG KEPUTUSAN SELEKSI PELANGGAN TERBAIK INDIHOME CUSTOMER GATHERING MENGGUNAKAN METODE WP (STUDI KASUS: PT. TELKOM WITEL PAPUA),” Tek. Teknol. Inf. dan Multimed., vol. 5, no. 1, pp. 34–40, Jun. 2024, doi: 10.46764/teknimedia.v5i1.185.
S. Liu, N. Lu, Z. Shang, and R. M. K. T. Rathnayaka, “A new grey relational analysis model of cross-sequences,” Grey Syst. Theory Appl., vol. 14, no. 2, pp. 299–317, Mar. 2024, doi: 10.1108/GS-10-2023-0098.
A. Kannan and N.M.Sivaram, “Evaluation and Performance Improvement of Environmentally Friendly Sustainable Turning of 6063 Aluminum Alloy in Dry Conditions Using Grey Relational Analysis,” Int. J. Automot. Mech. Eng., vol. 21, no. 1, pp. 11085–11098, Mar. 2024, doi: 10.15282/ijame.21.1.2024.12.0858.
S. Sintaro, “Penerapan Metode Grey Relational Analysis (GRA) Dalam Pemilihan E-Commerce,” J. Inf. Technol. Softw. Eng. Comput. Sci., vol. 1, no. 4, pp. 166–173, 2023, doi: 10.58602/itsecs.v1i4.75.
S. Setiawansyah, S. Sintaro, V. H. Saputra, and A. A. Aldino, “Combination of Grey Relational Analysis (GRA) and Simplified Pivot Pairwise Relative Criteria Importance Assessment (PIPRECIA-S) in Determining the Best Staff,” Bull. Informatics Data Sci., vol. 2, no. 2, p. 57, Mar. 2024, doi: 10.61944/bids.v2i2.67.
B. S. Nithyananda, G. V Naveen Prakash, N. Ankegowda, K. B. Vinay, and A. Anand, “Optimization of Performance and Emission Responses of Common Rail Direct Injection Engine by Taguchi-Grey Relational Analysis Technique,” in RAiSE-2023, Jan. 2024, vol. 59, no. 1, p. 140. doi: 10.3390/engproc2023059140.
V. H. Saputra and S. Setiawansyah, “Penerapan Metode SWARA dan Grey Relational Analysis Dalam Pemilihan Karyawan Terbaik,” J. Artif. Intell. Technol. Inf., vol. 2, no. 1, pp. 51–61, 2024, doi: 10.58602/jaiti.v2i1.107.
A. I. Petrov, “Entropy Method of Road Safety Management: Case Study of the Russian Federation,” Entropy, vol. 24, no. 2, p. 177, Jan. 2022, doi: 10.3390/e24020177.
C. Zhong, Q. Yang, J. Liang, and H. Ma, “Fuzzy comprehensive evaluation with AHP and entropy methods and health risk assessment of groundwater in Yinchuan Basin, northwest China,” Environ. Res., vol. 204, p. 111956, Mar. 2022, doi: 10.1016/j.envres.2021.111956.
M. W. Arshad, S. Setiawansyah, and M. Mesran, “Implementation of Entropy and Additive Ratio Assessment Methods in Determining the Best Warehouse Location,” Bull. Comput. Sci. Res., vol. 4, no. 4, pp. 318–326, 2024, doi: 10.47065/bulletincsr.v4i4.360.
A. Puška, A. Štilić, and I. Stojanović, “Approach for multi-criteria ranking of Balkan countries based on the index of economic freedom,” J. Decis. Anal. Intell. Comput., vol. 3, no. 1, pp. 1–14, Dec. 2023, doi: 10.31181/jdaic10017022023p.
Z. E. Satı, “Comparison of the criteria affecting the digital innovation performance of the European Union (EU) member and candidate countries with the entropy weight-TOPSIS method and investigation of its importance for SMEs,” Technol. Forecast. Soc. Change, vol. 200, p. 123094, Mar. 2024, doi: 10.1016/j.techfore.2023.123094.
S. Setiawansyah, “Penerapan Metode Entropy dan Grey Relational Analysis dalam Evaluasi Kinerja Karyawan,” J. Data Sci. Inf. Syst., vol. 2, no. 1, pp. 29–39, 2024, doi: 10.58602/dimis.v2i1.100.
I. G. J. A. Putra and I. P. B. Suyasa, “SISTEM PENDUKUNG KEPUTUSAN PENENTUAN PELANGGAN TERBAIK DI CV. BALI MEDIA,” JIS SIWIRABUDA, vol. 1, no. 1, pp. 39–44, 2023.
M. W. Arshad, D. Darwis, H. Sulistiani, R. R. Suryono, Y. Rahmanto, and D. A. Megawaty, “Combination of Weighted Product Method and Entropy Weighting in the Best Warehouse Employee Recommendation,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 5, no. 1, pp. 193–202, 2024, doi: 10.30865/klik.v5i1.2095.
M. W. Arshad, S. Setiawansyah, Y. Rahmanto, P. Palupiningsih, and S. Maryana, “Modification of Multi-Attribute Utility Theory in Determining Scholarship Recipient Students,” BEES Bull. Electr. Electron. Eng., vol. 5, no. 1, pp. 10–19, 2024, doi: 10.47065/bees.v5i1.5523.
Copyright (c) 2024 Dwi Handoko
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.